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Abstract
Partial Boolean algebras, first studied by Kochen and Specker in the 1960s,
provide the structure for Bell–Kochen–Specker theorems which deny the
existence of non-contextual hidden variable theories. In this paper, we study
partial Boolean algebras which are ‘algebraic’ in the sense that their elements
have coordinates in an algebraic number field. Several of these algebras have
been discussed recently in a debate on the validity of Bell–Kochen–Specker
theorems in the context of finite precision measurements.

The main result of this paper is that every algebraic finitely-generated
partial Boolean algebra B(T ) is finite when the underlying space H is three-
dimensional, answering a question of Kochen and showing that Conway and
Kochen’s infinite algebraic partial Boolean algebra has minimum dimension.
This result contrasts the existence of an infinite (non-algebraic)B(T ) generated
by eight elements in an abstract orthomodular lattice of height 3. We then
initiate a study of higher-dimensional algebraic partial Boolean algebras. First,
we describe a restriction on the determinants of the elements of B(T ) that are
generated by a given set T. We then show that when the generating set T consists
of the rays spanning the minimal vectors in a real irreducible root lattice, B(T )
is infinite just if that root lattice has an A5 sublattice. Finally, we characterize
the rays of B(T ) when T consists of the rays spanning the minimal vectors of
the root lattice E8.

PACS numbers: 02.10.−v, 03.65.−w, 03.65.Ta

1. Introduction

As motivation for the study of partial Boolean algebras, we provide a brief summary of the
mathematical structure of orthodox (non-relativistic) quantum mechanics. To every physical
system there corresponds a Hilbert space H, and any state of this system is described by
a unit vector ψ in H. A physical observable of the system is identified with a self-adjoint
operator E on H. Its eigenvalues are postulated to be the only possible physical results of

0305-4470/03/133899+12$30.00 © 2003 IOP Publishing Ltd Printed in the UK 3899

http://stacks.iop.org/ja/36/3899


3900 D Smith

measuring E, and an eigenvalue occurs in this context just when the state of the system is
in the corresponding eigenspace. Among the observables for a system are the orthogonal
projection operators which, in many interpretations of quantum mechanics, are identified
with properties of the system. Since every projection can be identified with its range, this
establishes a correspondence between quantum-mechanical properties and the set S(H) of
closed subspaces in H. For descriptions of the structure of S(H) and the many generalizations
that have been proposed to represent the logic of quantum mechanics, see e.g. [5, 7, 8, 15–17].

In this paper we focus on certain substructures in S(H), instances of the partial Boolean
algebras of Kochen and Specker [10], which we now motivate and describe. For elements
a and b in S(H), let a ∨ b be the closure of a + b, a ∧ b the intersection of a and b, and a′

the orthogonal complement of a in H. Two quantum-mechanical properties are said to be
‘simultaneously verifiable’ when their corresponding projection operators commute, and this
holds just if their eigenspaces satisfy the following geometric relationship. Two subspaces
a and b in S(H) are compatible, written a � b, if a = x ∨ z and b = y ∨ z for mutually
orthogonal subspaces x, y and z in S(H). Algebraically, the condition is equivalent to
requiring that a and b be members of a common Boolean subalgebra in S(H) which we
now describe.

Extending compatibility to a finite set T of more than two elements, define B(T ) to be
the partial subalgebra of S(H) generated by T under orthocomplementation ′ and the partial
operations ∧ and ∨, the two binary operations being defined only for pairs of elements
compatible in S(H). Then B(T ) has the structure of a partial Boolean induced by S(H) [1].
In general, a partial Boolean algebra (abbreviated as ‘pBa’) β consists of a collection {βα} of
Boolean algebras pasted together in a consistent manner: the binary operations ∧ and ∨ are
only partial operations in β, defined just when their operands are elements of a commonβα , and
in agreement with ∧α and ∨α , respectively. pBa provide the simplest physically-meaningful
generalizations of mutual compatibility of the elements of T by permitting the existence of
elements which belong to different Boolean algebras [11]. Employed in the literature primarily
to provide Bell–Kochen–Specker contradictions for hidden variable theories, these algebras
are poorly understood for even small sets T (see e.g. [10, 11, 21]).

In this paper, we investigate B(T ) in H = Rn and Cn that are ‘algebraic’ in the sense
that the elements of B(T ) are the spans of sets of vectors in Kn, where K is a number field
(a finite extension of the rational numbers in Cn). A point of departure is Conway and
Kochen’s example of a pBa in S(C4) [11]. It is generated by any five of the six 1-eigenspaces
corresponding to the spins in three orthogonal directions x, y and z of two independent spin- 1

2
particles:

σx ⊗ 1 1 ⊗ σx

σy ⊗ 1 1 ⊗ σy

σz ⊗ 1 1 ⊗ σz.

Here, σx, σy and σz are Pauli spin matrices. The pBa is algebraic since its elements are the
spans of vectors lying in K4, where K = Q(i). It is an infinite algebra; moreover, the group
of symmetries of the algebra is dense in the unitary group of C4.

We first show that every algebraic finitely-generated B(T ) is finite when H is three-
dimensional, answering a question of Kochen [11] and showing that Conway and Kochen’s
infinite algebraic pBa has minimum dimension. This result contrasts the existence of an
infinite (non-algebraic) B(T ) generated by eight elements in an abstract orthomodular lattice
of height 3. We then initiate a study of higher-dimensional algebraic partial Boolean algebras.
First we describe a restriction on the determinants of the elements of B(T ) that are generated
by a given set T. We then show that when the generating set T consists of the rays spanning
the minimal vectors in a real irreducible root lattice, B(T ) is infinite just if that root lattice has
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an A5 sublattice. Finally, we characterize the elements of B(T ) when T consists of the rays
spanning the minimal vectors of the root lattice E8.

Recently, there has been a debate involving certain algebraic pBa. Meyer [14] argues that
finite precision measurements ‘nullify’ Bell–Kochen–Specker theorems in R3, an argument
Kent [9] extends to any finite-dimensional real or complex Hilbert space. Subsequently, many
authors have defended Bell–Kochen–Specker theorems in these contexts (see e.g. [2, 6, 13]).
We do not wish to join this debate, as this is a study of pBa independent of their application to
Bell–Kochen–Specker theorems; however, we hope that the algebraic theory developed here
can inform those discussions.

1.1. Notation and definitions

Let S(H) be the set of closed subspaces of a Hilbert space H, and let T be a subset of S(H)
closed under ′ and containing 0. Define

♦(T ) := T ∪ {a ∧ b, a ∨ b | a � b for a, b ∈ T } .
The set ♦(T ) is closed under ′ by de Morgan’s laws and the fact that

a � b ⇔ a � b′ ⇔ a′ � b ⇔ a′ � b′.

Now define the partial Boolean algebra B(T ) generated by a subset T as

B(T ) :=
∞⋃
n=0

♦n(T ).

Here, ♦n(T ) := ♦(♦n−1(T )) for n � 1, where ♦0(T ) is defined to be the set obtained from T
by adjoining 0 and then closing this set under complementation in H. It will also be useful to
define


n(T ) := ♦n(T )\♦n−1(T ) n � 1

as the set of elements ‘born on the nth day’, and define 
0(T ) := ♦0(T ).
In discussing specific H, the underlying field is either R or C. Finite-dimensional H are

equipped with the standard inner product

[x, y] = x1y1 + · · · + xnyn

where x̄ represents the complex conjugate of x, and we write [x] for [x, x], the (squared) norm
of x.

Finally, we say that a ∈ S(H) is algebraic if a = 〈v1, . . . , vk〉 with each vi ∈ K , where
K is a number field. A subset T ⊆ S(H) is algebraic if each of its elements is algebraic.

2. Three-dimensional algebraic partial Boolean algebras

For three-dimensional H, every nontrivial element of S(H) is either a ray (a one-dimensional
subspace) or the complement of one, so we may refer only to the rays of S(H). We will denote a
ray by any spanning vector, remembering that we are only interested in the vector projectively.
For distinct rays, compatibility coincides with orthogonality. Thus, with the aforementioned
conventions, when a = 〈v〉 and b = 〈w〉 we may abbreviate ‘a � b generate (a ∨ b)′’ to
‘v ⊥ w generate vw’, where the last product is defined by:

vw = (v2w3 − v3w2, v3w1 − v1w3, v1w2 − v2w1).

Our main theorem is
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Theorem 2.1. If dim(H) = 3, then B(T ) is finite for finite algebraic T.

Proof. If u and w are two nonzero orthogonal vectors in C3, then

(uw)i(uw)i = [u][w] − uiui[w] −wiwi[u] (1)

and

(uw)j (uw)i = −uiuj [w] −wiwj [u] (2)

for distinct i, j ∈ {1, 2, 3}. Adding the three instances of equation (1) gives the familiar law
of composition for the complex numbers:

[uw] = [u][w]. (3)

This particular proof uses some elementary concepts of algebraic number theory (for an
introduction, see [12]). Let OK be the number ring of K. Multiplying the vectors in B(T ) by
appropriate integers in OK , we can assume that the vectors lie in O3

K . We can also assume
that each vector is primitive, which means that the three coordinates have no common nonunit
factor in OK .

We spend the next few paragraphs showing that [v], where v is any vector in B(T ), can
have only finitely-many possible values in OK . We begin by defining, for a finite subset
S ⊂ O3

K , the set�(S) to consist of all nontrivial prime ideals dividing the norm of at least one
member of S. �(T ) is finite since T is finite, so let �(T ) = {℘1, . . . , ℘t}. By equation (3),
�(B(T )) = �(T ), which we call � for short.

For each ℘ ∈ �, define the ‘defect’ δ℘ to be the minimum integer such that, for each
v ∈ T ,

℘γ ‖ [v] �⇒ ℘γ−δ℘ | vivj for all i, j ∈ {1, 2, 3} (4)

where ℘γ ‖ x means that the highest power of ℘ dividing x is the γ th one. Then, in fact,
condition (4) holds for all v ∈ B(T ). To see this, suppose that v ∈ 
k(T ). If k = 0, v satisfies
the condition by the definition of δ℘ . Otherwise, v is the product of two orthogonal vectors u
and w in ♦k−1(T ) which satisfy the condition by induction. Suppose ℘α ‖ [u] and ℘β ‖ [w].
Then ℘α+β ‖ [uw] by equation (3), and ℘α+β−δ℘ divides each (uw)i(uw)j by equations (1)
and (2), so condition (4) holds for v.

Let h be the order of the ideal class group for OK so that ℘h is principal for any prime
ideal ℘. Suppose that ℘(2h−1)+δ℘ | [v] for some v ∈ B(T ). Then ℘2h−1 | vivj for all i, j ∈
{1, 2, 3}. Since v is assumed primitive, one of its coordinates is not divisible by ℘h. But this
implies that ℘h must divide each of v1, v2, and v3, which implies that the principal ideal ℘̄h

divides each coordinate of v, contradicting the primitivity of v.
Thus, as an ideal equation,

([v]) = ℘1
α1℘2

α2 . . . ℘t
αt

where 0 � αi < (2h − 1) + δ℘i for i = 1, . . . , t . In particular, there are a finite number
of possible ideals ([v]) for primitive v ∈ B(T ), say (y1), . . . , (ym), where each yi is a real
number.

If ([v]) = (yi), then

[v] = v1v1 + v2v2 + v3v3 = µyi (5)

for some real unit µ ∈ OK . The group of real units in OK is finitely-generated, say by
µ1, . . . , µm. Since we are only concerned with vectors projectively, note that the square of
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Figure 1. The Greechie diagram for an infinite orthomodular lattice L = B(T ), where T contains
the eight elements in bold on the outside corners.

any real unit on the right-hand side of equation (5) can be absorbed by the left-hand side. This
means that µ can be taken as µ = µ

ε1
1 µ

ε2
2 . . . µ

εm
m with each εi ∈ {0, 1}, giving a finite number

of possibilities for the right-hand side of equation (5), and thus for [v].
We finish the proof by showing that, for each µyi , the set of v ∈ B(T ) satisfying

equation (5) is finite. Let n = [K : Q], and let f1, . . . , fn be the embeddings of K in C, where
f1, . . . , fr are the real embeddings and fr+2k = fr+2k−1 are the n − r complex embeddings,
1 � k � (n− r)/2. Applying fj to equation (5) gives

|fj (v1)|2 + |fj (v2)|2 + |fj (v3)|2 = fj (µyi) (6)

so that for each k ∈ {1, 2, 3},
|fj (vk)|2 � fj (µyi).

This means that the set of possible images of vk in Rn under the mapping θ : K → Rn

given by

θ(u) = (f1(u), . . . , fr (u),Re(fr+1(u)), Im(fr+2(u)), . . . ,Re(fn−1(u)), Im(fn(u)))

is bounded. Since θ(OK) is an n-dimensional lattice, there are only a finite number of possible
values for vk ∈ OK . Thus, there are only a finite number of possibilities for v = (v1, v2, v3).

�
We do not know of any non-algebraic finite T in S(C3) generating an infinite B(T ),

and we conjecture that none exists. However, the problem of specializing an arbitrary finite
T ⊆ S(C3) to the algebraic case appears to be quite hard.

We note that finitely-generated pBa induced by orthomodular lattices of height 3 do exist
(for an introduction to the theory of othomodular lattices and posets, see [8]). Figure 1 displays
a highly symmetric example of a Greechie diagram corresponding to an infinite L = B(T )

when |T | = 8. This L, however, need not be embeddable in S(C3).
We remark that when P is an orthomodular poset of height 3, the loop lemma restricts

its Greechie diagram to containing no loops of order less than 4. It is easy to see that in
any orthomodular poset of height 3, B(T ) is finite for any subset T containing at most three
elements. Figure 2 gives an example of an infinite P = B(T ) of height 3 with |T | = 4. The
construction is related to an independent example of Rogalewicz [19].
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Figure 2. The Greechie diagram for an infinite orthomodular poset P = B(T ), where T contains
the four elements in bold.

3. Higher-dimensional algebraic partial Boolean algebras

We now turn our attention to algebraic partial Boolean algebras for H of dimension higher
than 3. In particular, we study B(T ) for T consisting of spans of sublattices of a given integral
lattice L in Rn. In this context, a lattice is integral when the inner product of any two of its
vectors lies in Z; for an introduction to integral lattices, see [3]. Lemma 3.1 restricts the type
of sublattices generated by T, while other conditions ensure the generation of infinite algebras,
and we end with an example of an infinite B(T ) in R8 which contains all rays not excluded
by lemma 3.1.

To simplify the discussion, we speak of sublattices when technically we mean their spans
in Rn, and we refer to specific sublattices by unadorned rows of basis vectors. We use the
symbols + and − to represent 1 and −1, respectively, and for coordinates of vectors in Rn, we
use an overbar to represent negation. For example,

2+-000
++----
--+---

refers to a three-dimensional subspace of R6 spanned by three mutually orthogonal vectors of
norm 6.

Ubiquitous in discussions of integral lattices are the irreducible root lattices An (n � 1),
Dn (n � 4) and En (6 � n � 8), since, for example, by Witt’s theorem [22] the sublattice
generated by vectors of norms 1 and 2 in any integral lattice is the direct sum of irreducible
root lattices. For a detailed description of these lattices, as well as a discussion of the ‘gluing
theory’ used in the next section (see chapter 4 of [3]).

3.1. A determinant restriction

The following lemma shows that the determinants of elements of B(T ) generated by a set T of
sublattices in an integral lattice L are restricted. (If L is not integral but is such that the inner
product of any two elements is in (1/m)Z, the discussion may be applied tomL, for example.)

If an n-dimensional integral lattice L contains a sublattice

L1 ⊕ · · · ⊕ Lk (7)

of total dimension n, then the typical vector y of L can be written as

y = y1 + · · · + yk (8)
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where each yi is in L∗
i , the dual lattice of Li . Since the addition of a vector in Li does not

alter the role of yi , each yi may be taken from a set of representatives, or ‘glue vectors’, of
L∗
i /Li , the glue group for Li . We say then informally that L is generated by (7) and a group

of glue vectors (8) which have integral inner products and are closed under addition modulo
L1 ⊕ · · · ⊕ Lk. A component Li is said to have ‘self-glue’ in L if one of the glue vectors y
has only one yi nonzero, the condition occurring when there is a vector in L that is not in Li
but lies in the span of the vectors in Li .

Each glue group G = L∗
i /Li is Abelian and thus may be written as a direct sum, each

summand involving only a single prime p dividing |G|. The sum of those involving p is called
the ‘p-part’Gp of G.

Lemma 3.1. Consider the following containments among four n-dimensional integral lattices:

L

(X1 ⊕ L2)⊕ L4 (L1 ⊕X2)⊕ L4

(L1 ⊕ L3 ⊕ L2)⊕ L4

��

����

��

If each component sublattice has no self-glue in the lattice directly containing it, then any
prime dividing det(L3) divides det(X1) or det(X2).

Proof. Suppose p is a prime occurring in det(L3) but not in det(X1) or det(X2). Then
every vector y3 in the p-part Gp of L∗

3/L3 occurs in some glue vector yi + y3 for Li ⊕ L3

in Xi, i = 1, 2. Suppose x1 = y1 + y ′
3 and x2 = y2 + y ′′

3 are two such glue vectors, where
y ′

3, y
′′
3 ∈ Gp. Since x1, x2 ∈ L and since the Li are mutually orthogonal,

[y ′
3, y

′′
3 ] = [y1 + y ′

3, y2 + y ′′
3 ] = [x1, x2] ∈ Z.

Thus, every pair of vectors in Gp must have integral inner product. To see that this
is impossible, let y3 be a nonzero vector in Gp. Every vector v in X1 can be written as
v = v1 + v2 + v3, with summands from (L∗

1/L1) ⊕ L3,Gp and (L∗
3/L3)/Gp, respectively.

[y3, v1] ∈ Z since y3 ⊥ (L∗
1/L1) and y3 ∈ L∗

3/L3; [y3, v2] ∈ Z by assumption since v2 ∈ Gp;
and [y3, v3] ∈ Z since the orders of the two vectors in L∗

3/L3 are relatively prime. So
[y3, v] ∈ Z, which implies that y3 ∈ X∗

1/X1. However, p divides the order of y3 but not
det(X1) = |X∗

1/X1|. �

If the elements of B(T ) are sublattices of an integral lattice L, since we are only interested
in their spans in R we may assume that they have no self-glue in L. Lemma 3.1 then implies

Theorem 3.2. If T is a collection of sublattices of an integral lattice L, the set of primes

{p |p| det(x), x ∈ B(T )}
is precisely

� = {p |p| det(x), x ∈ T } ∪ {p |p| det(L)}.
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A = +0000 E =
+0000

0++00

B = ++000 F =
++000

00++0

C = ++++0 G =
+0000

0++++

D =
+0000

0+000
H =

+-000

++++0

Figure 3. Types of sublattices occurring in B(TD5).

For if X is a sublattice of L and X′ is the sublattice orthogonal to X in L, then
det(X′)| det(X) det(L). Also, ifX1 andX2 are sublattices of L andX1�X2, thenX1∧X2 = L3

as in lemma 3.1, and thus det(L3) contains only primes that divide det(X1) or det(X2).
Since the elements of B(T ) can be expressed in terms of the elements of T and the operations
∧ and ′, the set of primes is fixed as �.

3.2. B(T) for irreducible root lattices

In this section, we consider B(T ) when T contains the minimal (nonzero) vectors of an
irreducible root lattice.

In discussing the root lattices, we use systems of coordinates given in [3]. Specifically,

An = {(x0, . . . , xn) ∈ Zn+1 | x0 + · · · + xn = 0}
Dn = {(x1, . . . , xn) ∈ Zn | x1 + · · · + xn ≡ 0(2)}.

With these coordinates, it will be convenient to define the type of a sublattice X as the
equivalence class of all sublattices obtained from X by coordinate permutations and, for Dn,
sign changes as well.

We write TL to represent the set of minimal vectors of a lattice L in Rn. For the irreducible
root lattices we have

Theorem 3.3. B(TL) is infinite for all but finitely-many irreducible root lattices L. It is infinite
just when L contains an A5 sublattice.

Proof. Since An ⊆ An+1,Dn ⊆ Dn+1, A4 ⊆ D5, A5 ⊆ D6 and A5 ⊆ E6 ⊆ E7 ⊆ E8, it will
be enough to show that B

(
TD5

)
is finite and B

(
TA5

)
is infinite.

Any two nontrivial compatible subspaces x, y will generate a Boolean algebra 2n, 2 �
n � 4, which will contain n atoms (minimal nonzero elements). Figure 4 shows all of the
possible atoms of B({x, y}) for x, y ∈ B

(
TD5

)
when x � y, where x and y are distinct types

as given in figure 3. Figure 5 displays the possibilities when x and y are of the same type. X′

refers to the type of the orthogonal complement inD5 of a sublattice of type X, and 0 refers to
the zero subspace. In figure 4, entries below the diagonal correspond to x ∧ y, x ′ ∧ y ′; entries
above the diagonal are x ∧ y ′, x ′ ∧ y. Multiple possibilities are stacked within a cell, the kth
line in cell (i, j) corresponding to the kth line in cell (j, i).

Since every nontrivial element of S(R5) is a one- or two-dimensional subspace or the
complement of one, since the elements of TD5 are precisely the members of type B, and since
the tables are closed, B

(
TD5

)
is finite. Generated by the 20 elements of type B, it contains 952

distinct elements.
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A B C D E F G H

A A,B A,C
A,D
A, 0

A,E
B, 0

A,F C, 0 A,H

B 0, E ′ B,C
B,D
B, 0

B,E
B,E
A, 0

B,F
B, 0

B,G
B,H
C, 0

C 0, G′ 0, H ′ C,E
C, F
C, 0

C,G
A, 0

C,H
B, 0

D
0, D
A,D′

0, E
B,D′

D,E
A,B
A,B

B,B

E
0, E
A,E ′

0, F
0, D
B,E ′

0, H
0, B
A,E
B,D

E,F
A,B

B,C
E,H
A,C

F 0, F
0, E
B, F ′

0, G
C, F ′ B,E

0, B
B, F

F,G
A,C

B,C

G A,G′ 0, H
0, F
C,G′ A,H

0, C
C, F

G,H
A,B

H 0, H
0, G
B,H ′

0, E
C,H ′

0, C
B,H

B,G
0, B
C,H

Figure 4. Types generated by pairs of distinct types in B(TD5 ).

A 0, D′, A,A

B
0, F ′, B,B
0, D′, B,B

C 0, F ′, C, C

D
0, A,D,D
A,D,A,A

E

0, A,E,E
A,D,B,B
A, F,B,B
B,E,A,A

F
0, A, F, F
B,E,B,B
C,G,C,C

G A,F,C,C

H
0, A,H,H
B,E,C,C
C,G,B,B

Figure 5. Types generated by pairs of the same type in B(TD5 ).

To see that B
(
TA5

)
is infinite, first note that the sublattices of type 2+---0 are generated

from the minimal ones of type +-0000 as in figure 6. Now, consider the isometry given in
terms of the standard basis of R6 by φ : x → Mx, where

M = 1

6




2 5 −1 −1 −1 2
5 −1 2 2 −1 −1

−1 2 5 −1 2 −1
−1 2 −1 5 2 −1
2 −1 −1 −1 5 2

−1 −1 2 2 −1 5



.

One may verify that φ fixes ++++++ and maps the 15 elements of TA5 to (the halves
of) the vectors on the right-hand side of figure 7. Inductively, φk+1

(
TA5

)
is contained in

B
(
φk

(
TA5

)) ⊆ B
(
TA5

)
, since φk

(
TA5

)
is geometrically similar to TA5 , k = 1, 2, . . . . Thus, we
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+-0000

00+-00
∧ +00-00

0-+000
= +-+-00

000+-0

+00--+

++-00-

∧
00+0-0

+0-0-+

++0-0-

=
2+---0

0+--32

+0--0+

++00--
∧ 2+---0

0+--32
= 2+---0

Figure 6. Generating sublattices of type 2+---0 from TA5 .

v ∈ TA5 2φ(v)
+-0000 → -2--+0

0+-000 → 2--+0-

00+-00 → 002200

000+-0 → 0+-+2+

0000+- → -0+++2

+0-000 → ++20+-

0+0-00 → 2-+-0-

00+0-0 → 0++-2+

000+0- → -+02--

+00-00 → ++02+-

0+00-0 → 200020

00+00- → -+20--

+000-0 → +2---0

0+000- → +0++-2

+0000- → 020002

Figure 7. Images of TA5 under φ.

need only show that
⋃∞
k=0 φ

k
(
TA5

)
is infinite. This follows from the fact that, for example, on

the two-dimensional subspace of R6 orthogonal to

+++000

000+++

++22--

5722--

φ is a rotation of infinite order. �

3.3. A comprehensive algebra in R
8

In this final section, we provide an example of a partial Boolean algebra in R8 which contains
all possible rays not excluded by lemma 3.1. To this end, call B(T ) comprehensive in L if
it contains all one-dimensional sublattices of L whose determinants contain only primes in
� = {p | p| det(x), x ∈ T }.

When n = 4 or 8,Rn admits a multiplication which preserves inner products, leading
to the real quaternions H and octonions O, respectively; with R and C, they comprise the
composition algebras (see [4]). In each of these algebras, there is a notion of a set of ‘integers’
whose properties mimic the set of rational integers in R. Additively, the maximal set of



Algebraic partial Boolean algebras 3909

++000000

00++0000
∧ +0+00000

0+0+0000
= ++++0000

++++0000

0000++++
∧ ++00++00

00++00++
= ++++++++

+++00+00

+00++-00
∧ ++0+00+0

+0+0+0-0
= 2++++000

Figure 8. Generating small norm vectors in B(O8
1 ).

quaternionic integers H 4 forms a scaled copy of the D4 lattice, and the maximal set of
octonion integers O8 corresponds to a scaled copy of the E8 lattice. Coordinates for O8 can
be given as (x∞, x0, . . . , x6), where each xi ∈ (1/2)Z, and where the set of subscripts for
which the coordinates are in fact in Z is one of the following:

∅ 0124 0235 0346 ∞450 0561 ∞602 ∞013
∞0123456 ∞356 ∞146 ∞125 1236 ∞234 1345 2456.

A result in [20, 4] generalizes the work of Rehm [18] to describe the set of left- and
right-hand divisors of norm m of any ρ of norm mn in H 4 or O8. In particular, we conclude
that for primitive ρ, these divisor sets are geometrically similar to the set of units. We now
use that result to provide an example of a comprehensive B(T ) in R8.

Theorem 3.4. B
(
TE8

)
is comprehensive in E8.

Proof. Let O8
m denote the set of norm-m elements of O8

m, so that O8
1 is geometrically similar

to TE8 . Since 2O8 is an integral lattice and det(2O8) = 24, lemma 3.1 implies that the only
possible norms of elements in O8

1 are 2k, k = 0, 1, . . . .
To see that O8

2k ⊆ B
(
O8

1

)
for all k, first note that

+++0+000

++-0-000
∧ ++0+000+

++0-000-
= ++000000

where each vector on the left-hand side of the equality is in 2O8
1 . Using the symmetries of

the coordinate system forO8, all sublattices of type ++000000 can be generated. From these
elements, the types on the right-hand side of figure 8 are generated. Since these types contain
all vectors inO8 of norm 2 (multiplied by a factor of 2), we find thatO8

2 ·O8
1 = O8

2 ⊆ B
(
O8

1

)
.

Moreover, since multiplication by ρ ∈ O8
2 is a geometrical similarity, we conclude in a similar

way that any set S of vectors geometrically similar to O8
1 generatesO8

2 · S.
We can now prove easily that O8

2k ⊆ B
(
O8

1

)
by induction on k. For k � 1, let ρ ∈ O8

2k

be primitive. Then the set R2k−1(ρ) of right-hand divisors ρ of norm 2k−1 is geometrically
similar to O8

1 , and it is contained in B
(
O8

1

)
by assumption. Thus, O8

2 · R2k−1(ρ) ⊆
B(R2k−1(ρ)) ⊆ B

(
O8

1

)
. Since every primitive element of O8

2k−1 is in R2k−1(ρ) for some
primitive ρ, we must haveO8

2k = O8
2 ·O8

2k−1 ⊆ B(O8
1 ). Since B

(
TE8

)
is geometrically similar

to B
(
O8

1

)
, B

(
TE8

)
is comprehensive in E8. �
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